Complexity of planar signed graph homomorphisms to cycles
نویسندگان
چکیده
منابع مشابه
The complexity of signed graph and edge-coloured graph homomorphisms
The goal of this work is to study homomorphism problems (from a computational point of view) on two superclasses of graphs: 2-edge-coloured graphs and signed graphs. On the one hand, we consider the H-Colouring problem when H is a 2-edge-coloured graph, and we show that a dichotomy theorem would imply the dichotomy conjecture of Feder and Vardi. On the other hand, we prove a dichotomy theorem f...
متن کاملHomomorphisms of signed planar graphs
Signed graphs are studied since the middle of the last century. Recently, the notion of homomorphism of signed graphs has been introduced since this notion captures a number of well known conjectures which can be reformulated using the definitions of signed homomorphism. In this paper, we introduce and study the properties of some target graphs for signed homomorphism. Using these properties, w...
متن کاملHomomorphisms of planar signed graphs to signed projective cubes
We conjecture that every signed graph of unbalanced girth 2g, whose underlying graph is bipartite and planar, admits a homomorphism to the signed projective cube of dimension 2g−1. Our main result is to show that for a given g, this conjecture is equivalent to the corresponding case (k = 2g) of a conjecture of Seymour claiming that every planar k-regular multigraph with no odd edge-cut of less ...
متن کاملThe complexity of counting graph homomorphisms
The problem of counting homomorphisms from a general graph G to a fixed graph H is a natural generalisation of graph colouring, with important applications in statistical physics. The problem of deciding whether any homomorphism exists was considered by Hell and Nešetřil. They showed that decision is NPcomplete unless H has a loop or is bipartite; otherwise it is in P. We consider the problem o...
متن کاملCorrigendum: The complexity of counting graph homomorphisms
We close a gap in the proof of Theorem 4.1 in our paper “The complexity of counting graph homomorphisms” [Random Structures and Algorithms 17 (2000), 260– 289]. Our paper [2] analysed the complexity of counting graph homomorphisms from a given graph G into a fixed graph H. This problem was called #H. A crucial step in our argument, Theorem 4.1, was to prove that the counting problem #H is #P -c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2020
ISSN: 0166-218X
DOI: 10.1016/j.dam.2020.03.029